Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
ACS Infect Dis ; 9(2): 221-238, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36606559

RESUMO

Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Quinolonas , Antituberculosos/farmacologia , Citocromos/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Quinolonas/farmacologia
2.
Proc Natl Acad Sci U S A ; 119(30): e2205228119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858451

RESUMO

The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.


Assuntos
Diosgenina , Complexo IV da Cadeia de Transporte de Elétrons , Esteroides , Animais , Sítios de Ligação , Domínio Catalítico/efeitos dos fármacos , Bovinos , Diosgenina/farmacologia , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/química , Oxirredução , Oxigênio/metabolismo , Conformação Proteica , Prótons , Esteroides/química , Esteroides/farmacologia , Esteróis
3.
J Biochem Mol Toxicol ; 35(11): e22897, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34448514

RESUMO

Phosphine (PH3 ) is widely used as an insecticide and rodenticide. On the contrary, many cases of PH3 poisoning have been reported worldwide. Unfortunately, there is no specific antidote against PH3 toxicity. Disruption of mitochondrial function and energy metabolism is a well-known mechanism of PH3 cytotoxicity. Dihydroxyacetone (DHA) is an adenosine triphosphate supplying agent which significantly improves mitochondrial function. The current study was designed to evaluate DHA's effect on inhalational PH3 poisoning in an animal model. DHA was injected into BALB/c mice before and/or after the start of the PH3 inhalation. The cytochrome c oxidase activity was assessed in the animals' brain, heart, and liver exposed to PH3 (for 15, 30, and 60 min, with and without the antidote). The LC50 of PH3 was calculated to be 18.02 (15.42-20.55) ppm over 2 h of exposure. Pretreatment of DHA (1 or 2 g/kg) increased the LC50 of PH3 by about 1.6- or 3-fold, respectively. Posttreatment with DHA (2 g/kg) increased the LC50 of PH3 by about 1.4-fold. PH3 inhibited the activity of cytochrome c oxidase in the assessed organs. It was found that DHA treatment restored mitochondrial cytochrome c oxidase activity. These findings suggested that DHA could be an effective antidote for PH3 poisoning.


Assuntos
Di-Hidroxiacetona/uso terapêutico , Fosfinas/envenenamento , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Coração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
Cells ; 9(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003582

RESUMO

Estradiol, testosterone and other steroid hormones inhibit cytochrome c oxidase (CcO) purified from bovine heart. The inhibition is strongly dependent on concentration of dodecyl-maltoside (DM) in the assay. The plots of Ki vs [DM] are linear for both estradiol and testosterone which may indicate an 1:1 stoichiometry competition between the hormones and the detergent. Binding of estradiol, but not of testosterone, brings about spectral shift of the oxidized CcO consistent with an effect on heme a33+. We presume that the hormones bind to CcO at the bile acid binding site described by Ferguson-Miller and collaborators. Estradiol is shown to inhibit intraprotein electron transfer between hemes a and a3. Notably, neither estradiol nor testosterone suppresses the peroxidase activity of CcO. Such a specific mode of action indicates that inhibition of CcO activity by the hormones is associated with impairing proton transfer via the K-proton channel.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Heme/química , Animais , Bovinos , Cianetos/química , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/química , Estradiol/metabolismo , Glucosídeos/química , Heme/metabolismo , Cinética , Oxirredução , Testosterona/metabolismo
5.
Cancer Lett ; 492: 185-196, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758616

RESUMO

Breast cancer is the most common cancer among women worldwide, with 70% being estrogen receptor-positive (ER+). Although ER-targeted treatment is effective in treating ER + breast cancer, chemoresistance and metastasis still prevail. Outcome-predictable biomarkers can help improve patient prognosis. Through the analysis of the Array Express database, The Cancer Genome Atlas-Breast Cancer datasets, and breast tumor tissue array results, we found that cytochrome c oxidase subunit 5a (COX5A) was related to poor prognosis of ER + breast cancer. Further studies revealed that COX5A was positively associated with metastasis and chemoresistance in ER + breast cancer. In vitro experiments showed that knockdown of COX5A was accompanied by a decrease in ERα expression, cell cycle arrest, and epithelial-mesenchymal transition blockade, resulting in an inhibition of proliferation and invasion. Knockdown of COX5A enhanced the chemosensitivity of breast cancer cells by decreasing adenosine triphosphate and increasing reactive oxygen species levels. We report that miR-204 can target and inhibit the expression of COX5A, thus, reversing the functions of COX5A in ER + breast cancer cells. We found that COX5A may serve as a prognostic biomarker in ER + breast cancer.


Assuntos
Neoplasias da Mama/patologia , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , MicroRNAs/fisiologia , Receptores de Estrogênio/análise , Adulto , Idoso , Neoplasias da Mama/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Transição Epitelial-Mesenquimal , Feminino , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica
6.
ACS Infect Dis ; 6(4): 725-737, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32092260

RESUMO

The ability to respire and generate adenosine triphosphate (ATP) is essential for the physiology, persistence, and pathogenicity of Mycobacterium tuberculosis, which causes tuberculosis. By employing a lead repurposing strategy, the malarial cytochrome bc1 inhibitor SCR0911 was tested against mycobacteria. Docking studies were carried out to reveal potential binding and to understand the binding interactions with the target, cytochrome bcc. Whole-cell-based and in vitro assays demonstrated the potency of SCR0911 by inhibiting cell growth and ATP synthesis in both the fast- and slow-growing M. smegmatis and M. bovis bacillus Calmette-Guérin, respectively. The variety of biochemical assays and the use of a cytochrome bcc deficient mutant strain validated the cytochrome bcc oxidase as the direct target of the drug. The data demonstrate the broad-spectrum activity of SCR0911 and open the door for structure-activity relationship studies to improve the potency of new mycobacteria specific SCR0911 analogues.


Assuntos
Antimaláricos/farmacologia , Antituberculosos/farmacologia , Reposicionamento de Medicamentos , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Simulação de Acoplamento Molecular
7.
Dokl Biochem Biophys ; 488(1): 342-345, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31768856

RESUMO

The antioxidant and antiradical properties of the tetra nitrosyl iron complex with thiosulfate ligands (TNIC) were studied in vitro in mouse brain homogenates. It was found for the first time that TNIC is an effective antioxidant. The effect of TNIC on the catalytic activity of mitochondrial enzymes cytochrome c oxidase and monoamine oxidase A was studied. It was shown for the first time that TNIC is an inhibitor of the catalytic activity of cytochrome c oxidase and monoamine oxidase A in animal brain mitochondria in vitro.


Assuntos
Encéfalo/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons , Ferro , Mitocôndrias/enzimologia , Proteínas Mitocondriais , Inibidores da Monoaminoxidase , Óxidos de Nitrogênio , Tiossulfatos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ferro/química , Ferro/farmacologia , Camundongos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Óxidos de Nitrogênio/síntese química , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/farmacologia , Tiossulfatos/síntese química , Tiossulfatos/química , Tiossulfatos/farmacologia
8.
Sci Rep ; 9(1): 14605, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601880

RESUMO

Infestation of phosphine (PH3) resistant insects threatens global grain reserves. PH3 fumigation controls rice weevil (Sitophilus oryzae) but not highly resistant insect pests. Here, we investigated naturally occurring strains of S. oryzae that were moderately resistant (MR), strongly resistant (SR), or susceptible (wild-type; WT) to PH3 using global proteome analysis and mitochondrial DNA sequencing. Both PH3 resistant (PH3-R) strains exhibited higher susceptibility to ethyl formate-mediated inhibition of cytochrome c oxidase than the WT strain, whereas the disinfectant PH3 concentration time of the SR strain was much longer than that of the MR strain. Unlike the MR strain, which showed altered expression levels of genes encoding metabolic enzymes involved in catabolic pathways that minimize metabolic burden, the SR strain showed changes in the mitochondrial respiratory chain. Our results suggest that the acquisition of strong PH3 resistance necessitates the avoidance of oxidative phosphorylation through the accumulation of a few non-synonymous mutations in mitochondrial genes encoding complex I subunits as well as nuclear genes encoding dihydrolipoamide dehydrogenase, concomitant with metabolic reprogramming, a recognized hallmark of cancer metabolism. Taken together, our data suggest that reprogrammed metabolism represents a survival strategy of SR insect pests for the compensation of minimized energy transduction under anoxic conditions. Therefore, understanding the resistance mechanism of PH3-R strains will support the development of new strategies to control insect pests.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Resistência a Inseticidas , Inseticidas , Fosfinas , Gorgulhos/genética , Animais , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético , Ésteres do Ácido Fórmico , Mitocôndrias/metabolismo , Mutação , Oxirredução , Polimorfismo de Nucleotídeo Único , Proteoma , Proteômica , Análise de Regressão , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Gorgulhos/enzimologia
9.
Int J Antimicrob Agents ; 54(5): 661-667, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31374333

RESUMO

Thrombocytopenia is commonly seen in patients receiving linezolid for >14 days. Linezolid is a reversible inhibitor of mitochondrial function in various cell types. This study investigated the inhibitory effects of linezolid and tedizolid, and their potential recovery on (i) CYTox I expression (subunit I of cytochrome c-oxidase; encoded by the mitochondrial genome), (ii) cytochrome c-oxidase activity and (iii) mitochondrial respiration (Seahorse bioanalysis) in two megakaryocytic cell lines [UT-7 WT (human acute megakaryoblastic leukaemia cells) and UT-7 MPL (transduced to express the thrombopoietin receptor)]. Cells were exposed to linezolid (0.5-25 mg/L) or tedizolid (0.1-5 mg/L) for up to 5 days and recovery followed after drug removal. Both oxazolidinones caused concentration- and time-dependent inhibition of CYTox I expression, cytochrome c-oxidase activity and mitochondrial spare capacity. On electron microscopy, mitochondria appeared dilated with a loss of cristae. Globally, tedizolid exerted stronger effects than linezolid. While CYTox I expression recovered completely after 6 days of drug washout, only partial (linezolid) or no (tedizolid) recovery of cytochrome c-oxidase activity, and no rescue of mitochondrial spare capacity (after 3 days) was observed. Thus, and in contrast to previous studies using a variety of cell lines unrelated to megakaryocytic lineages, the inhibitory effects exerted by oxazolidinones on the mitochondrial function of megakaryoblastic cells appear to be particularly protracted. Given the dynamics of platelet production and destruction, these results may explain why oxazolidinone-induced thrombocytopenia is one of the most common side effects in patients exposed to these antibiotics.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Linezolida/toxicidade , Células Progenitoras de Megacariócitos/metabolismo , Mitocôndrias/efeitos dos fármacos , Oxazolidinonas/toxicidade , Inibidores da Síntese de Proteínas/toxicidade , Tetrazóis/toxicidade , Linhagem Celular , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Trombocitopenia/induzido quimicamente
11.
FASEB J ; 33(8): 9167-9181, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31063702

RESUMO

The mitochondria-to-nucleus retrograde signaling (MtRS) pathway aids in cellular adaptation to stress. We earlier reported that the Ca2+- and calcineurin-dependent MtRS induces macrophage differentiation to bone-resorbing osteoclasts. However, mechanisms through which macrophages sense and respond to cellular stress remain unclear. Here, we induced mitochondrial stress in macrophages by knockdown (KD) of subunits IVi1 or Vb of cytochrome c oxidase (CcO). Whereas both IVi1 and Vb KD impair CcO activity, IVi1 KD cells produced higher levels of cellular and mitochondrial reactive oxygen species with increased glycolysis. Additionally, IVi1 KD induced the activation of MtRS factors NF-κB, NFAT2, and C/EBPδ as well as inflammatory cytokines, NOS 2, increased phagocytic activity, and a greater osteoclast differentiation potential at suboptimal RANK-L concentrations. The osteoclastogenesis in IVi1 KD cells was reversed fully with an IL-6 inhibitor LMT-28, whereas there was minimal rescue of the enhanced phagocytosis in these cells. In agreement with our findings in cultured macrophages, primary bone marrow-derived macrophages from MPV17-/- mice, a model for mitochondrial dysfunction, also showed higher propensity for osteoclast formation. This is the first report showing that CcO dysfunction affects inflammatory pathways, phagocytic function, and osteoclastogenesis.-Angireddy, R., Kazmi, H. R., Srinivasan, S., Sun, L., Iqbal, J., Fuchs, S. Y., Guha, M., Kijima, T., Yuen, T., Zaidi, M., Avadhani, N. G. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Macrófagos/citologia , Macrófagos/fisiologia , Osteoclastos/citologia , Osteoclastos/fisiologia , Fagocitose/fisiologia , Animais , Diferenciação Celular , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Técnicas de Silenciamento de Genes , Macrófagos/classificação , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mitocôndrias/metabolismo , Osteogênese , Células RAW 264.7 , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico
12.
Sci Rep ; 9(1): 283, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670719

RESUMO

The ß-neurotoxic secreted phospholipases A2 (sPLA2s) block neuro-muscular transmission by poisoning nerve terminals. Damage inflicted by such sPLA2s (ß-ntx) on neuronal mitochondria is characteristic, very similar to that induced by structurally homologous endogenous group IIA sPLA2 when its activity is elevated, as, for example, in the early phase of Alzheimer's disease. Using ammodytoxin (Atx), the ß-ntx from the venom of the nose-horned viper (Vipera a. ammodytes), the sPLA2 receptor R25 has been detected in neuronal mitochondria. This receptor has been purified from porcine cerebral cortex mitochondria by a new Atx-affinity-based chromatographic procedure. Mass spectrometry analysis revealed R25 to be the subunit II of cytochrome c oxidase (CCOX), an essential constituent of the respiratory chain complex. CCOX was confirmed as being the first intracellular membrane receptor for sPLA2 by alternative Atx-affinity-labellings of purified CCOX, supported also by the encounter of Atx and CCOX in PC12 cells. This discovery suggests the explanation of the mechanism by which ß-ntx hinders production of ATP in poisoned nerve endings. It also provides a new insight into the potential function and dysfunction of endogenous GIIA sPLA2 in mitochondria.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mitocôndrias/metabolismo , Fosfolipases A2 Secretórias/farmacologia , Receptores da Fosfolipase A2/análise , Venenos de Víboras/enzimologia , Animais , Córtex Cerebral/ultraestrutura , Neurônios/ultraestrutura , Síndromes Neurotóxicas , Células PC12 , Subunidades Proteicas , Ratos , Receptores da Fosfolipase A2/isolamento & purificação , Suínos , Viperidae
13.
Biochem Biophys Res Commun ; 506(1): 251-258, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30348529

RESUMO

Researchers have shown that long noncoding RNAs (lncRNAs) are closely associated with the pathogenesis of colorectal cancer (CRC). In here, we aimed to explore the function of lncRNA MAFG-AS1 in tumorigenesis of CRC. Firstly, we found that the expression of MAFG-AS1 was upregulated in CRC tissues and positively correlated with the advanced tumor stage. A reciprocal repression was found between MAFG-AS1 and miR-147b. The expression of miR-147b was downregulated in CRC tissues and inversely correlated with MAFG-AS1. Both the low-expression of miR-147b expression and the advanced tumor stage were independent factor for poor survival probability. Furthermore, overexpression of MAFG-AS1 promoted cell proliferation, cell cycle progression, and invasion, and inhibited apoptosis, while transduction of miR-147b partially reversed the effect of MAFG-AS1 on cellular processes. Consistently, stable over-expression of MAFG-AS1 contributed to the growth of colon cancer cell xenografts in vivo. NDUFA4 was identified as a direct target of miR-147b and knockdown of NDUFA4 abolished the oncogenic role of miR-147b inhibitor. Besides, MAFG-AS1 contributed to cell glycolysis by sponging miR-147b and activation of NDUFA4, causing an upregulation of PDK1, PFK1 and PKM2. Taken together, our study suggested that MAFG-AS1 functions as a novel oncogenic lncRNA in the development of CRC by regulating miR-147b/NDUFA4.


Assuntos
Neoplasias Colorretais/patologia , Progressão da Doença , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fator de Transcrição MafG/genética , MicroRNAs/antagonistas & inibidores , RNA Longo não Codificante/fisiologia , Proteínas Repressoras/genética , Animais , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Glicólise , Xenoenxertos , Humanos , Camundongos , MicroRNAs/fisiologia
14.
Cell Physiol Biochem ; 49(2): 717-727, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30165359

RESUMO

BACKGROUND/AIMS: The phosphatidylinositol-3-kinase -AKT (PI3K-AKT) is an important intracellular signal pathway in regulating cell proliferation, differentiation and apoptosis. In previous studies, we've demonstrated that PI3K-AKT pathway protects cardiomyocytes from ischemic and hypoxic apoptosis through mitochondrial function. However, the molecular mechanisms underlying hypoxia-induced cardiomyocyte apoptosis via PI3K-AKT pathway remain ill-defined. Here, we addressed this question. METHODS: Cardiomyocytes were exposed to hypoxia, with/without different inhibitors and then protein levels were assessed by Western blotting. RESULTS: We found that the PI3K-AKT pathway was activated in cardiomyocytes that were exposed to hypoxia. Moreover, the phospho-AKT (pAKT) translocated from cytosol to mitochondria via mitochondrial adenosine triphosphate-dependent potassium (mitoKATP), leading to an increase in cytochrome c oxidase (CcO) activity to suppress apoptosis. On the other hand, the mitoKATP specific blocker, 5-hydroxydecanote (5-HD), or suppression of CcO using siRNA, inhibited the pAKT mitochondrial translocation to maintain the CcO activity, resulting in mitochondrial dysfunction and cellular apoptosis induced by hypoxia. CONCLUSION: These findings suggest that the anti-apoptotic effect of the PI3K-AKT pathway through pAKT translocation to mitochondrial via mitoKATP may be conducted through modification of CcO activity.


Assuntos
Apoptose , Hipóxia Celular , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Células Cultivadas , Cromonas/farmacologia , Ácidos Decanoicos/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hidroxiácidos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Morfolinas/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Canais de Potássio/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Sci Rep ; 8(1): 12734, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143716

RESUMO

Despite striking advances in the treatment of metastasized melanoma, the disease is often still fatal. Attention is therefore paid towards combinational regimens. Oxidants endogenously produced in mitochondria are currently targeted in pre-clinical and clinical studies. Cytotoxic synergism of mitochondrial cytochrome c oxidase (CcO) inhibition in conjunction with addition of exogenous oxidants in 2D and 3D melanoma cell culture models were examined. Murine (B16) and human SK-MEL-28 melanoma cells exposed to low-dose CcO inhibitors (potassium cyanide or sodium azide) or exogenous oxidants alone were non-toxic. However, we identified a potent cytotoxic synergism upon CcO inhibition and plasma-derived oxidants that led to rapid onset of caspase-independent melanoma cell death. This was mediated by mitochondrial dysfunction induced by superoxide elevation and ATP depletion. This observation was validated by siRNA-mediated knockdown of COX4I1 in SK-MEL-28 cells with cytotoxicity in the presence of exogenous oxidants. Similar effects were obtained with ADDA 5, a recently identified specific inhibitor of CcO activity showing low toxicity in vivo. Human keratinocytes were not affected by this combinational treatment, suggesting selective effects on melanoma cells. Hence, targeting mitochondrial CcO activity in conjunction with exogenous pro oxidant therapies may constitute a new and effective melanoma treatment modality.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Oxidantes/toxicidade , Gases em Plasma/química , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Melanoma/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , RNA Interferente Pequeno/metabolismo
16.
J Neonatal Perinatal Med ; 11(1): 79-86, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689747

RESUMO

BACKGROUND: Hypoglycemia occurs frequently in the neonate and may result in neurologic dysfunction. Its impact on the kinetics of cellular respiration and bioenergetics in the neonatal brain remains to be explored. AIMS: Develop murine model to investigate the effects of hypoglycemia on neonatal brain bioenergetics. STUDY DESIGN: Forebrain fragments were excised from euthanized BALB/c pups aged <24 hours to 14 days. We measured cellular respiration (µM O2 min-1.mg-1) in phosphate-buffered saline with and without glucose, using phosphorescence oxygen analyzer, as well as cellular adenosine triphosphate (ATP, nmol.mg-1) using the luciferin-luciferase system. RESULTS: In the presence of glucose, although cellular respiration was 11% lower in pups ≤3 days compared to those 3- 14 days old (0.48 vs. 0.54), that difference was not statistically significant (p = 0.14). Respiration driven by endogenous metabolic fuels (without added glucose) was 16% lower in pups ≤3 days compared to those 3- 14 days (0.35 vs. 0.42, p = 0.03), confirming their increased dependency on exogenous glucose. Although cellular ATP was similar between the two age groups (14.9 vs. 11.2, p = 0.32), the ATP content was more severely depleted without added glucose in the younger pups, especially in the presence of the cytochrome c oxidase inhibitor cyanide. The first-order rate constant of cellular ATP decay (hydrolysis) was 44% lower in 2-day-old pups compared to 14-day-old mice (0.43 vs. 0.77 min-1, p = 0.03). CONCLUSIONS: Forebrain cellular respiration and ATP consumption are lower in young pups than older mice. In the absence of glucose, the support for these processes is reduced in young pups, explaining their brain hypersensitivity to hypoglycemia.


Assuntos
Trifosfato de Adenosina/metabolismo , Animais Recém-Nascidos/fisiologia , Metabolismo Energético , Hipoglicemia/fisiopatologia , Consumo de Oxigênio/efeitos dos fármacos , Prosencéfalo/fisiopatologia , Fatores Etários , Animais , Respiração Celular/efeitos dos fármacos , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Glucose/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Prosencéfalo/metabolismo , Cianeto de Sódio/farmacologia
17.
Toxicol Lett ; 289: 1-13, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29501571

RESUMO

We performed a multiple 'omics study by integrating data on epigenomic, transcriptomic, and proteomic perturbations associated with mitochondrial dysfunction in primary human hepatocytes caused by the liver toxicant valproic acid (VPA), to deeper understand downstream events following epigenetic alterations in the mitochondrial genome. Furthermore, we investigated persistence of cross-omics changes after terminating drug treatment. Upon transient methylation changes of mitochondrial genes during VPA-treatment, increasing complexities of gene-interaction networks across time were demonstrated, which normalized during washout. Furthermore, co-expression between genes and their corresponding proteins increased across time. Additionally, in relation to persistently decreased ATP production, we observed decreased expression of mitochondrial complex I and III-V genes. Persistent transcripts and proteins were related to citric acid cycle and ß-oxidation. In particular, we identified a potential novel mitochondrial-nuclear signaling axis, MT-CO2-FN1-MYC-CPT1. In summary, this cross-omics study revealed dynamic responses of the mitochondrial epigenome to an impulse toxicant challenge resulting in persistent mitochondrial dysfunctioning. Moreover, this approach allowed for discriminating between the toxic effect of VPA and adaptation.


Assuntos
Anticonvulsivantes/efeitos adversos , DNA Mitocondrial/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Ácido Valproico/efeitos adversos , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Epigenômica , Perfilação da Expressão Gênica , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Cinética , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/agonistas , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteômica
18.
J Bioenerg Biomembr ; 50(1): 21-32, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29302769

RESUMO

Neonicotinoids have high agonistic affinity to insect nicotinic acetylcholine receptors (nAChR) and are frequently used as insecticides against most devastating lepidopteran insect pests. Imidacloprid influenced dose-dependent decline in the state III and IV respiration, respiration control index (RCI), and P/O ratios, in vitro and in vivo. The bioassay indicated its LD50 value to be 531.24 µM. The insecticide exhibited a dose-dependent inhibition on F0F1-ATPase and complex IV activity. At 600 µM, the insecticide inhibited 83.62 and 27.13% of F0F1-ATPase and complex IV activity, respectively, and induced the release of 0.26 nmoles/min/mg protein of cytochrome c. A significant dose- and time-dependent increase in oxidative stress was observed; at 600 µM, the insecticide correspondingly induced lipid peroxidation, LDH activity, and accumulation of H2O2 content by 83.33, 31.51 and 223.66%. The stress was the maximum at 48 h of insecticide treatment (91.58, 35.28, and 189.80%, respectively). In contrast, catalase and superoxide dismutase were reduced in a dose- and time-dependent manner in imidacloprid-fed larvae. The results therefore suggest that imidacloprid impedes mitochondrial function and induces oxidative stress in H. armigera, which contributes to reduced growth of the larvae along with its neurotoxic effect.


Assuntos
Larva/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Mariposas/efeitos dos fármacos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Mariposas/metabolismo , Mariposas/ultraestrutura , Síndromes Neurotóxicas/etiologia , ATPases Translocadoras de Prótons/antagonistas & inibidores
19.
Cell Death Dis ; 8(6): e2853, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569778

RESUMO

The detection of intracellular molecular oxygen (O2) levels is important for understanding cell physiology, cell death, and drug effects, and has recently been improved with the development of oxygen-sensitive probes that are compatible with live cell time-lapse microscopy. We here provide a protocol for the use of the nanoparticle probe MitoImage-MM2 to monitor intracellular oxygen levels by confocal microscopy under baseline conditions, in response to mitochondrial toxins, and following mitochondrial cytochrome-c release. We demonstrate that the MitoImage-MM2 probe, which embeds Pt(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin as oxygen sensor and poly(9,9-dioctylfluorene) as an O2-independent component, enables quantitative, ratiometric time-lapse imaging of intracellular O2. Multiplexing with tetra-methyl-rhodamine-methyl ester in HeLa cervical cancer cells showed significant increases in intracellular O2 accompanied by strong mitochondrial depolarization when respiratory chain complexes III or IV were inhibited by Antimycin A or sodium azide, respectively, and when cells were maintained at 'physiological' tissue O2 levels (5% O2). Multiplexing also allowed us to monitor intracellular O2 during the apoptotic signaling process of mitochondrial outer membrane permeabilization in HeLa expressing cytochrome-c-eGFP, and demonstrated that mitochondria post cytochrome-c release are able to retain their capacity to respire at physiological O2 despite a decrease in mitochondrial membrane potential.


Assuntos
Citocromos c/metabolismo , Mitocôndrias/metabolismo , Sondas Moleculares/química , Oxigênio/análise , Análise de Célula Única/métodos , Antimicina A/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fluorenos/química , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metaloporfirinas/química , Mitocôndrias/efeitos dos fármacos , Oxigênio/metabolismo , Polímeros/química , Rodaminas/química , Azida Sódica/farmacologia , Imagem com Lapso de Tempo/métodos
20.
Oncotarget ; 8(23): 37568-37583, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28455961

RESUMO

Patients with glioblastoma have one of the lowest overall survival rates among patients with cancer. Standard of care for patients with glioblastoma includes temozolomide and radiation therapy, yet 30% of patients do not respond to these treatments and nearly all glioblastoma tumors become resistant. Chlorpromazine is a United States Food and Drug Administration-approved phenothiazine widely used as a psychotropic in clinical practice. Recently, experimental evidence revealed the anti-proliferative activity of chlorpromazine against colon and brain tumors. Here, we used chemoresistant patient-derived glioma stem cells and chemoresistant human glioma cell lines to investigate the effects of chlorpromazine against chemoresistant glioma. Chlorpromazine selectively and significantly inhibited proliferation in chemoresistant glioma cells and glioma stem cells. Mechanistically, chlorpromazine inhibited cytochrome c oxidase (CcO, complex IV) activity from chemoresistant but not chemosensitive cells, without affecting other mitochondrial complexes. Notably, our previous studies revealed that the switch to chemoresistance in glioma cells is accompanied by a switch from the expression of CcO subunit 4 isoform 2 (COX4-2) to COX4-1. In this study, chlorpromazine induced cell cycle arrest selectively in glioma cells expressing COX4-1, and computer-simulated docking studies indicated that chlorpromazine binds more tightly to CcO expressing COX4-1 than to CcO expressing COX4-2. In orthotopic mouse brain tumor models, chlorpromazine treatment significantly increased the median overall survival of mice harboring chemoresistant tumors. These data indicate that chlorpromazine selectively inhibits the growth and proliferation of chemoresistant glioma cells expressing COX4-1. The feasibility of repositioning chlorpromazine for selectively treating chemoresistant glioma tumors should be further explored.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Clorpromazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Glioma/tratamento farmacológico , Animais , Antineoplásicos Alquilantes/farmacologia , Antipsicóticos/farmacologia , Neoplasias Encefálicas/metabolismo , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Antagonistas de Dopamina/farmacologia , Reposicionamento de Medicamentos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glioma/metabolismo , Humanos , Camundongos Nus , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA